5. Arguments of the input script#
Note
Although there are a lot of parameters, many of them are duplicated. There are two main parts: one is the parameters passed to dflow (dflow_config, dflow_s3_config, parallelism); The other is AESP’s own parameters (aesp_config).
- dflow_config:#
- type:
dict
|NoneType
, optional, default:None
argument path:dflow_config
The configuration passed to dflow
- dflow_s3_config:#
- type:
dict
|NoneType
, optional, default:None
argument path:dflow_s3_config
The S3 configuration passed to dflow
- parallelism:#
- type:
int
|NoneType
, optional, default:None
argument path:parallelism
Maximum number of running pods for the workflow.
- aesp_config:#
- type:
dict
argument path:aesp_config
Configuration of AESP
Depending on the value of type, different sub args are accepted.
- type:#
When type is set to
std-sp
:Standard workflow based on interatomic potentials or quantum chemistry methods.
- opt_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params
Configuration of optimization algorithms.
Depending on the value of type, different sub args are accepted.
- type:#
When type is set to
std
:Evolutionary algorithms based on each generation.
- generation:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/generation
Evolutionary algorithms are an iterative process, and each iteration is called a generation.
- gen_size:#
- type:
int
, optional, default:50
argument path:aesp_config[std-sp]/opt_params[std]/generation/gen_size
The size of the generated structures in initial generation.
- adaptive:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/generation/adaptive
Adaptive mode
- size_change_ratio:#
- type:
float
, optional, default:0.5
argument path:aesp_config[std-sp]/opt_params[std]/generation/adaptive/size_change_ratio
The variable proportion of structure generation in each generation.
- population:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/population
In a evolutionary algorithm, a population is a collection of individuals.
- pop_size:#
- type:
int
, optional, default:40
argument path:aesp_config[std-sp]/opt_params[std]/population/pop_size
Population size in initial generation.
- adaptive:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/population/adaptive
Adaptive adjustment configuration
- size_change_ratio:#
- type:
float
, optional, default:0.5
argument path:aesp_config[std-sp]/opt_params[std]/population/adaptive/size_change_ratio
The variable proportion of population size in each generation.
- operator:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator
The operator of structure generation.
Depending on the value of type, different sub args are accepted.
- type:#
When type is set to
bulk
:Bulk (3D)
- generator:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator
Generator
- prob:#
- type:
float
, optional, default:0.33
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/prob
Probability of generator
- random_gen_prob:#
- type:
float
, optional, default:1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_prob
Probability of random generator
- random_gen_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_params
Configuration of random generator.
- composition:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_params/composition
Compositions of the structure to be predicted
- spgnum:#
- type:
list
, optional, default:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_params/spgnum
Space group number (1-230)
- factor:#
- type:
float
, optional, default:1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_params/factor
Volume factor used to generate the crystal
- thickness:#
- type:
float
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_params/thickness
Thickness
- max_count:#
- type:
float
, optional, default:50
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/generator/random_gen_params/max_count
Maximum number of attempts
- crossover:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover
Crossover
- prob:#
- type:
float
, optional, default:0.33
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/prob
Probability of crossover
- plane_cross_prob:#
- type:
float
, optional, default:0.33
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/plane_cross_prob
Probability of plane crossover
- sphere_cross_prob:#
- type:
float
, optional, default:0.33
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/sphere_cross_prob
Probability of sphere crossover
- cylinder_cross_prob:#
- type:
float
, optional, default:0.34
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/cylinder_cross_prob
Probability of cylinder crossover
- plane_cross_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/plane_cross_params
Configuration of plane crossover
- stddev:#
- type:
float
, optional, default:0.1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/plane_cross_params/stddev
Standard deviation of the Gaussian distribution
- max_count:#
- type:
int
, optional, default:100
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/plane_cross_params/max_count
Maximum number of attempts
- sphere_cross_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/sphere_cross_params
Configuration of sphere crossover
- stddev:#
- type:
float
, optional, default:0.1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/sphere_cross_params/stddev
Standard deviation of the Gaussian distribution
- max_count:#
- type:
int
, optional, default:100
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/sphere_cross_params/max_count
Maximum number of attempts
- cylinder_cross_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/cylinder_cross_params
Configuration of cylinder crossover
- stddev:#
- type:
float
, optional, default:0.1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/cylinder_cross_params/stddev
Standard deviation of the Gaussian distribution
- max_count:#
- type:
int
, optional, default:100
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/crossover/cylinder_cross_params/max_count
Maximum number of attempts
- mutation:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation
Mutation
- continuous_mut_factor:#
- type:
float
, optional, default:1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/continuous_mut_factor
Continuous mutation factor (0-4)
- prob:#
- type:
float
, optional, default:0.34
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/prob
Probability of mutation
- strain_mut_prob:#
- type:
float
, optional, default:0.33
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/strain_mut_prob
Probability of strain Mutation
- permutation_mut_prob:#
- type:
float
, optional, default:0.33
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/permutation_mut_prob
Probability of permutation Mutation
- ripple_mut_prob:#
- type:
float
, optional, default:0.34
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/ripple_mut_prob
Probability of ripple Mutation
- strain_mut_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/strain_mut_params
Configuration of strain Mutation
- stddev:#
- type:
float
, optional, default:0.1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/strain_mut_params/stddev
Standard deviation of the Gaussian distribution
- max_count:#
- type:
int
, optional, default:100
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/strain_mut_params/max_count
Maximum number of attempts
- permutation_mut_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/permutation_mut_params
Configuration of permutation Mutation
- max_count:#
- type:
int
, optional, default:100
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/permutation_mut_params/max_count
Maximum number of attempts
- ripple_mut_params:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/ripple_mut_params
Configuration of ripple Mutation
- max_count:#
- type:
int
, optional, default:100
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/ripple_mut_params/max_count
Maximum number of attempts
- miu:#
- type:
int
, optional, default:2
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/ripple_mut_params/miu
miu
- rho:#
- type:
float
, optional, default:0.3
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/ripple_mut_params/rho
rho
- eta:#
- type:
int
, optional, default:1
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/mutation/ripple_mut_params/eta
eta
- adaptive:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/adaptive
Adaptive adjustment of probabilities for different operators
Depending on the value of type, different sub args are accepted.
- type:#
- type:
str
(flag key), default:adjustment
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/adaptive/type
possible choices:adjustment
,distribution
Adaptive mode
adjustment
: Adjustment modedistribution
: Distribution model
When type is set to
adjustment
:Adjustment mode
- factor:#
- type:
float
, optional, default:0.5
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/adaptive[adjustment]/factor
Scaling factor that control the magnitude of change in adaptive (0-1)
- use_recent_gen:#
- type:
int
, optional, default:2
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/adaptive[adjustment]/use_recent_gen
Use of information from recent generations
When type is set to
distribution
:Distribution model
- use_recent_gen:#
- type:
int
, optional, default:2
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/adaptive[distribution]/use_recent_gen
Use of information from recent generations
- hard_constrains:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains
Hard constraints on structure
- alpha:#
- type:
float
|list
, optional, default:[20, 160]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/alpha
Angle (alpha)
- beta:#
- type:
float
|list
, optional, default:[20, 160]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/beta
Angle (beta)
- gamma:#
- type:
float
|list
, optional, default:[20, 160]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/gamma
Angle (gamma)
- chi:#
- type:
float
|list
, optional, default:[20, 160]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/chi
Dihedral angle (chi)
- psi:#
- type:
float
|list
, optional, default:[20, 160]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/psi
Dihedral angle (psi)
- phi:#
- type:
float
|list
, optional, default:[20, 160]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/phi
Dihedral angle (phi)
- a:#
- type:
float
|list
, optional, default:[0, 100]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/a
Lattice constant (a)
- b:#
- type:
float
|list
, optional, default:[0, 100]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/b
Lattice constant (b)
- c:#
- type:
float
|list
, optional, default:[0, 100]
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/c
Lattice constant (c)
- tol_matrix:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/tol_matrix
Tolerance matrix of the structure
- tuples:#
- type:
NoneType
|list
, optional, default:None
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/tol_matrix/tuples
Setting the minimum distance limit between atoms.
- prototype:#
- type:
str
, optional, default:atomic
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/tol_matrix/prototype
Types of generated structures.
- factor:#
- type:
float
, optional, default:1.0
argument path:aesp_config[std-sp]/opt_params[std]/operator[bulk]/hard_constrains/tol_matrix/factor
Scaling factor for minimum distance limit.
- cvg_criterion:#
- type:
dict
argument path:aesp_config[std-sp]/opt_params[std]/cvg_criterion
Convergence criteria for evolutionary algorithms
- max_gen_num:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/opt_params[std]/cvg_criterion/max_gen_num
Maximum number of generations of evolutionary algorithms
- continuous_opt_num:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/opt_params[std]/cvg_criterion/continuous_opt_num
Maximum number of generations for which the optimal structure remains constant
- seeds:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/opt_params[std]/seeds
File path of random seed, i.e. the customized initial structure file.
- calc_stages:#
- type:
list
argument path:aesp_config[std-sp]/calc_stages
Configuration of the calculation stages.
This argument takes a list with each element containing the following:
Depending on the value of type, different sub args are accepted.
- type:#
When type is set to
matgl
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[matgl]/inputs_config
The configuration for preparing inputs.
- relax_cell:#
- type:
bool
, optional, default:True
argument path:aesp_config[std-sp]/calc_stages[matgl]/inputs_config/relax_cell
Whether to optimize the crystal cell
- step_max:#
- type:
int
, optional, default:1000
argument path:aesp_config[std-sp]/calc_stages[matgl]/inputs_config/step_max
Maximum number of steps for structural relaxation.
- f_max:#
- type:
float
, optional, default:0.05
argument path:aesp_config[std-sp]/calc_stages[matgl]/inputs_config/f_max
Force convergence conditions for structural relaxation
- model:#
- type:
str
, optional, default:M3GNet-MP-2021.2.8-PES
argument path:aesp_config[std-sp]/calc_stages[matgl]/inputs_config/model
Model used by Matgl
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[matgl]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:python
argument path:aesp_config[std-sp]/calc_stages[matgl]/run_config/command
The run command of Matgl
- out:#
- type:
str
, optional, default:data
argument path:aesp_config[std-sp]/calc_stages[matgl]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:#
- type:
str
, optional, default:fp.log
argument path:aesp_config[std-sp]/calc_stages[matgl]/run_config/log
The log file name of Matgl
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[matgl]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[matgl]/pstress
The external pressure in GPa
When type is set to
dpmd
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[dpmd]/inputs_config
The configuration for preparing inputs.
- relax_cell:#
- type:
bool
, optional, default:True
argument path:aesp_config[std-sp]/calc_stages[dpmd]/inputs_config/relax_cell
Whether to optimize the crystal cell
- step_max:#
- type:
int
, optional, default:1000
argument path:aesp_config[std-sp]/calc_stages[dpmd]/inputs_config/step_max
Maximum number of steps for structural relaxation.
- f_max:#
- type:
float
, optional, default:0.05
argument path:aesp_config[std-sp]/calc_stages[dpmd]/inputs_config/f_max
Force convergence conditions for structural relaxation
- model:#
- type:
str
, optional, default:frozen_model.pb
argument path:aesp_config[std-sp]/calc_stages[dpmd]/inputs_config/model
Model used by DeepMD
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[dpmd]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:python
argument path:aesp_config[std-sp]/calc_stages[dpmd]/run_config/command
The run command of DeepMD
- out:#
- type:
str
, optional, default:data
argument path:aesp_config[std-sp]/calc_stages[dpmd]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:#
- type:
str
, optional, default:fp.log
argument path:aesp_config[std-sp]/calc_stages[dpmd]/run_config/log
The log file name of DeepMD
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[dpmd]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[dpmd]/pstress
The external pressure in GPa
When type is set to
gulp
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[gulp]/inputs_config
The configuration for preparing inputs.
- kw_file:#
- type:
str
argument path:aesp_config[std-sp]/calc_stages[gulp]/inputs_config/kw_file
The path to the template incar file
- pp_file:#
- type:
str
argument path:aesp_config[std-sp]/calc_stages[gulp]/inputs_config/pp_file
The pseudopotential files set by a dict, e.g. {“Al” : “path/to/the/al/pp/file”, “Mg” : “path/to/the/mg/pp/file”}
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[gulp]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:python
argument path:aesp_config[std-sp]/calc_stages[gulp]/run_config/command
The command of Gulp
- out:#
- type:
str
, optional, default:data
argument path:aesp_config[std-sp]/calc_stages[gulp]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:#
- type:
str
, optional, default:fp.log
argument path:aesp_config[std-sp]/calc_stages[gulp]/run_config/log
The log file name of Gulp
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[gulp]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[gulp]/pstress
The external pressure in GPa
When type is set to
emt
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[emt]/inputs_config
The configuration for preparing inputs.
- relax_cell:#
- type:
bool
, optional, default:True
argument path:aesp_config[std-sp]/calc_stages[emt]/inputs_config/relax_cell
Whether to optimize the crystal cell
- step_max:#
- type:
int
, optional, default:1000
argument path:aesp_config[std-sp]/calc_stages[emt]/inputs_config/step_max
Maximum number of steps for structural relaxation.
- f_max:#
- type:
float
, optional, default:0.05
argument path:aesp_config[std-sp]/calc_stages[emt]/inputs_config/f_max
Force convergence conditions for structural relaxation
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[emt]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:python
argument path:aesp_config[std-sp]/calc_stages[emt]/run_config/command
The run command of Emt
- out:#
- type:
str
, optional, default:data
argument path:aesp_config[std-sp]/calc_stages[emt]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:#
- type:
str
, optional, default:fp.log
argument path:aesp_config[std-sp]/calc_stages[emt]/run_config/log
The log file name of Emt
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[emt]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[emt]/pstress
The external pressure in GPa
When type is set to
vasp
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[vasp]/inputs_config
The configuration for preparing inputs.
- incar:#
- type:
str
argument path:aesp_config[std-sp]/calc_stages[vasp]/inputs_config/incar
The path to the template incar file
- pp_files:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[vasp]/inputs_config/pp_files
The pseudopotential files set by a dict, e.g. {“Al” : “path/to/the/al/pp/file”, “Mg” : “path/to/the/mg/pp/file”}
- kspacing:#
- type:
float
argument path:aesp_config[std-sp]/calc_stages[vasp]/inputs_config/kspacing
The spacing of k-point sampling. ksapcing will overwrite the incar template
- kgamma:#
- type:
bool
, optional, default:True
argument path:aesp_config[std-sp]/calc_stages[vasp]/inputs_config/kgamma
If the k-mesh includes the gamma point. kgamma will overwrite the incar template
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[vasp]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:vasp
argument path:aesp_config[std-sp]/calc_stages[vasp]/run_config/command
The command of VASP
- out:#
- type:
str
, optional, default:data
argument path:aesp_config[std-sp]/calc_stages[vasp]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- log:#
- type:
str
, optional, default:fp.log
argument path:aesp_config[std-sp]/calc_stages[vasp]/run_config/log
The log file name of VASP
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[vasp]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[vasp]/pstress
The external pressure in GPa
When type is set to
gaussian
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config
The configuration for preparing inputs.
- keywords:#
- type:
str
|list
argument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/keywords
Gaussian keywords, e.g. force b3lyp/6-31g**. If a list, run multiple steps.
- multiplicity:#
- type:
int
|str
, optional, default:auto
argument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/multiplicity
spin multiplicity state. It can be a number. If auto, multiplicity will be detected automatically, with the following rules:
fragment_guesses=True multiplicity will +1 for each radical, and +2 for each oxygen molecule
fragment_guesses=False multiplicity will be 1 or 2, but +2 for each oxygen molecule.
- charge:#
- type:
int
, optional, default:0
argument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/charge
molecule charge. Only used when charge is not provided by the system
- basis_set:#
- type:
str
, optionalargument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/basis_set
custom basis set
- keywords_high_multiplicity:#
- type:
str
, optionalargument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/keywords_high_multiplicity
keywords for points with multiple raicals. multiplicity should be auto. If not set, fallback to normal keywords
- fragment_guesses:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/fragment_guesses
initial guess generated from fragment guesses. If True, multiplicity should be auto
- nproc:#
- type:
int
, optional, default:1
argument path:aesp_config[std-sp]/calc_stages[gaussian]/inputs_config/nproc
Number of CPUs to use
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[gaussian]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:g16
argument path:aesp_config[std-sp]/calc_stages[gaussian]/run_config/command
The command of Gaussian
- out:#
- type:
str
, optional, default:data
argument path:aesp_config[std-sp]/calc_stages[gaussian]/run_config/out
The output dir name of labeled data. In deepmd/npy format provided by dpdata.
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[gaussian]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[gaussian]/pstress
The external pressure in GPa
When type is set to
fpop_abacus
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config
The configuration for preparing inputs.
- input_file:#
- type:
str
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/input_file
A template INPUT file.
- pp_files:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/pp_files
The pseudopotential files for the elements. For example: {“H”: “/path/to/H.upf”, “O”: “/path/to/O.upf”}.
- element_mass:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/element_mass
Specify the mass of some elements. For example: {“H”: 1.0079, “O”: 15.9994}.
- kpt_file:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/kpt_file
The KPT file, by default None.
- orb_files:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/orb_files
The numerical orbital fiels for the elements, by default None. For example: {“H”: “/path/to/H.orb”, “O”: “/path/to/O.orb”}.
- deepks_descriptor:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/deepks_descriptor
The deepks descriptor file, by default None.
- deepks_model:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/inputs_config/deepks_model
The deepks model file, by default None.
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:abacus
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/run_config/command
The command of abacus
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[fpop_abacus]/pstress
The external pressure in GPa
When type is set to
fpop_cp2k
:- inputs_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[fpop_cp2k]/inputs_config
The configuration for preparing inputs.
- inp_file:#
- type:
str
argument path:aesp_config[std-sp]/calc_stages[fpop_cp2k]/inputs_config/inp_file
The path to the user-submitted CP2K input file.
- run_config:#
- type:
dict
argument path:aesp_config[std-sp]/calc_stages[fpop_cp2k]/run_config
The configuration for running tasks.
- command:#
- type:
str
, optional, default:cp2k
argument path:aesp_config[std-sp]/calc_stages[fpop_cp2k]/run_config/command
The command of cp2k
- task_max:#
- type:
int
, optional, default:10
argument path:aesp_config[std-sp]/calc_stages[fpop_cp2k]/task_max
Maximum number of calculation tasks for each iteration.
- pstress:#
- type:
float
, optional, default:0.0
argument path:aesp_config[std-sp]/calc_stages[fpop_cp2k]/pstress
The external pressure in GPa
- default_step_config:#
- type:
dict
, optional, default:{}
argument path:aesp_config[std-sp]/default_step_config
The default step configuration.
- template_config:#
- type:
dict
, optional, default:{'image': None}
argument path:aesp_config[std-sp]/default_step_config/template_config
The configs passed to the PythonOPTemplate.
- image:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/template_config/image
The image to run the step.
- timeout:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/default_step_config/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/template_config/envs
The environmental variables.
- template_slice_config:#
- type:
dict
, optionalargument path:aesp_config[std-sp]/default_step_config/template_slice_config
The configs passed to the Slices.
- group_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/default_step_config/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:#
- type:
float
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/parallelism
The parallelism for the step
- executor:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/default_step_config/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:#
- type:
str
(flag key)argument path:aesp_config[std-sp]/default_step_config/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- step_configs:#
- type:
dict
argument path:aesp_config[std-sp]/step_configs
Configuration for each step in the workflow.
- gen_struc_step:#
- type:
dict
, optional, default:{'template_config': {'image': None, 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:aesp_config[std-sp]/step_configs/gen_struc_step
Step configuration for structure generation
- template_config:#
- type:
dict
, optional, default:{'image': None}
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_config
The configs passed to the PythonOPTemplate.
- image:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_config/image
The image to run the step.
- timeout:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_config/envs
The environmental variables.
- template_slice_config:#
- type:
dict
, optionalargument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_slice_config
The configs passed to the Slices.
- group_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:#
- type:
float
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/parallelism
The parallelism for the step
- executor:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/gen_struc_step/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:#
- type:
str
(flag key)argument path:aesp_config[std-sp]/step_configs/gen_struc_step/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- scheduler_step:#
- type:
dict
, optional, default:{'template_config': {'image': None, 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:aesp_config[std-sp]/step_configs/scheduler_step
Step configuration for scheduler
- template_config:#
- type:
dict
, optional, default:{'image': None}
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_config
The configs passed to the PythonOPTemplate.
- image:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_config/image
The image to run the step.
- timeout:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_config/envs
The environmental variables.
- template_slice_config:#
- type:
dict
, optionalargument path:aesp_config[std-sp]/step_configs/scheduler_step/template_slice_config
The configs passed to the Slices.
- group_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/scheduler_step/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:#
- type:
float
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/parallelism
The parallelism for the step
- executor:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/scheduler_step/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:#
- type:
str
(flag key)argument path:aesp_config[std-sp]/step_configs/scheduler_step/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- prep_calc_step:#
- type:
dict
, optional, default:{'template_config': {'image': None, 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:aesp_config[std-sp]/step_configs/prep_calc_step
Step configuration for prepare calcalation
- template_config:#
- type:
dict
, optional, default:{'image': None}
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_config
The configs passed to the PythonOPTemplate.
- image:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_config/image
The image to run the step.
- timeout:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_config/envs
The environmental variables.
- template_slice_config:#
- type:
dict
, optionalargument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_slice_config
The configs passed to the Slices.
- group_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:#
- type:
float
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/parallelism
The parallelism for the step
- executor:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/prep_calc_step/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:#
- type:
str
(flag key)argument path:aesp_config[std-sp]/step_configs/prep_calc_step/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
:
- run_calc_step:#
- type:
dict
, optional, default:{'template_config': {'image': None, 'timeout': None, 'retry_on_transient_error': None, 'timeout_as_transient_error': False, 'envs': None}, 'continue_on_failed': False, 'continue_on_num_success': None, 'continue_on_success_ratio': None, 'parallelism': None, 'executor': None}
argument path:aesp_config[std-sp]/step_configs/run_calc_step
Step configuration for run calcalation
- template_config:#
- type:
dict
, optional, default:{'image': None}
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_config
The configs passed to the PythonOPTemplate.
- image:#
- type:
str
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_config/image
The image to run the step.
- timeout:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_config/timeout
The time limit of the OP. Unit is second.
- retry_on_transient_error:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_config/retry_on_transient_error
The number of retry times if a TransientError is raised.
- timeout_as_transient_error:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_config/timeout_as_transient_error
Treat the timeout as TransientError.
- envs:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_config/envs
The environmental variables.
- template_slice_config:#
- type:
dict
, optionalargument path:aesp_config[std-sp]/step_configs/run_calc_step/template_slice_config
The configs passed to the Slices.
- group_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_slice_config/group_size
The number of tasks running on a single node. It is efficient for a large number of short tasks.
- pool_size:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/template_slice_config/pool_size
The number of tasks running at the same time on one node.
- continue_on_failed:#
- type:
bool
, optional, default:False
argument path:aesp_config[std-sp]/step_configs/run_calc_step/continue_on_failed
If continue the the step is failed (FatalError, TransientError, A certain number of retrial is reached…).
- continue_on_num_success:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/continue_on_num_success
Only in the sliced OP case. Continue the workflow if a certain number of the sliced jobs are successful.
- continue_on_success_ratio:#
- type:
float
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/continue_on_success_ratio
Only in the sliced OP case. Continue the workflow if a certain ratio of the sliced jobs are successful.
- parallelism:#
- type:
int
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/parallelism
The parallelism for the step
- executor:#
- type:
dict
|NoneType
, optional, default:None
argument path:aesp_config[std-sp]/step_configs/run_calc_step/executor
The executor of the step.
Depending on the value of type, different sub args are accepted.
- type:#
- type:
str
(flag key)argument path:aesp_config[std-sp]/step_configs/run_calc_step/executor/type
possible choices:dispatcher
The type of the executor.
When type is set to
dispatcher
: